

Synaptic Plasticity: Spike-timing dependent plasticity (STDP)

Oct 23rd, 2023

Michael Graupner (PhD)

michael.graupner@u-paris.fr Saints-Pères Paris Institute for the Neurosciences CNRS UMR 8003, Université Paris Cité

slides on: https://www.biomedicale.parisdescartes.fr/~mgraupe/teaching.php

Cerebellum and locomotion

Cerebellum ensures that movements are well timed and highly coordinated.

Cerebellum and locomotion

Students are welcome

Acquisition of a complex motor task

Population activity (Ca imaging)

Behavioral analysis (DeepLabCut)

Activity linked to behavior (Electrophysiology)

Learning on the neuronal network level

Learning on the neuronal network level

Stimulus / Experience

Learning on the neuronal network level

Focus of today's lecture

Which activity pattern leads to a change in the connection between the neurons?

Which role does the timing of pre- and postsynaptic action potentials play?

Experimental evidence : synaptic plasticity <-> memory

Relation between LTP and learning/memory

Time per quadrant (s)

- NMDA receptor required to learn
 platform location [Morris et al., 1986]
- NMDA receptor required to form spatial memories (place fields)

[McHugh et al. 1996]

Outline: STDP ... spike-timing dependent plasiticity

- 1. STDP: introduction and history
- 2. Phenomenology of STDP
- 3. Induction mechanisms
- 4. Biophysical models of STDP
- 5. STDP in vivo

[Bi & Poo 1998]

Outline: STDP ... spike-timing dependent plasiticity

- 1. STDP: introduction and history
- 2. Phenomenology of STDP
- 3. Induction mechanisms
- 4. Biophysical models of STDP
- 5. STDP in vivo

[Bi & Poo 1998]

Chemical synapse: transmits electrical signals

- directional transmission
- conversion of signals allows for flexibility/plasticity

Chemical synapse: underlying biological machinery

Chemical synapse: excitatory or inhibitory

depolarization: excitatory postsynaptic potential (EPSP)

neurotransmitter	receptor
glutamate	AMPA, NMDA
acetylcholine	nAChR, mACHR
catecholamines	G-protein-coupled receptors
serotonin	5-HT ₃ ,
histamine	G-protein-coupled receptors

Inhibitory synapse

neurotransmitter	receptor
GABA	GABA _A , GABA _B
glycine	GlyR

Different forms of plasticity

Short-term synaptic plasticity

- transient change in transmission efficacy
- time scale of changes ~1 sec

Long-term synaptic plasticity

- long-lasting change (>60 min) in transmission efficacy
- time scale of induction
 - ~ 1 min

Synaptic plasticity: induction, maintenance & states

Spike timing : nomenclature

Spike timing: nomenclature

LTP induction: early conceptual work

"When an axon of cell A is near enough to excite a cell B and *repeatedly* and *persistently* takes part in firing it, some growth or metabolic changes take place in one or both cells such that A's efficiency, as one of the cells firing B, is *increased*."

Induction: first experimental work in hippocampus

EC ... enthorhinal cortex

DG ... dentate gyrus

CA3/1 ... cornu ammonis 3/1

pp ... perforant path

mf ... mossy fibres

ac ... associational commissural path

sc ... Schaffer collateral

Induction: LTP through high frequency stimulation

hippocampus (in vivo)

LTD induction: postulate of Stent

"When the presynaptic axon of cell A *repeatedly* and *persistently* fails to excite the postsynaptic cell B while cell B is firing under the influence of other presynaptic axons, metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is *decreased*."

[G. Stent 1973;

Plasticity induction: LTD obtained at low frequencies

hippocampus (slices)

[Dudek and Bear 1992; Dunwiddie and Lynch 1978]

STDP: plasticity from single spike-pairs

hippocampal cultures

[Magee & Johnston 1997;

Zhang et al. 1998;

Feldman 200]

Markram et al. 1997; Sjöström et al. 2001;

Frequency-dependent plasticity and STDP

Frequency of conditioning stimulation (Hz)

Spike timing (ms)

Bi & Poo 1998;

Outline: STDP ... spike-timing dependent plasiticity

- 1. STDP: introduction and history
- 2. Phenomenology of STDP
- 3. Induction mechanisms
- 4. Biophysical models of STDP
- 5. STDP in vivo

[Bi & Poo 1998]

Number of pairings

- generally: plasticity induction with
 Number of spike pairs

 spike-pairs requires the repeated presentation of the pre-post pair
- LTP induced with a few pairs
- LTD requires the presentation of ~20 stimulation pairs

Role of synaptic inhibition

Role of synaptic inhibition

at the corticostriatal synapse : inhibition inverts the STDP curve

Role of neuromodulation - Dopamine

- many neurotransmitter have been shown to shape synaptic plasticity
- e.g.: dopamine controls sign and magnitude of plasticity

[Zhang et al. PNAS 2009]

STDP depends on frequency of spike-pairs

- in the first studies of STDP, spike-pairs were presented at low frequencies
- pre-post pairing induce no plasticity at low and LTP at high frequencies
- post-pre pairings induce LTD at low- and LTP at high frequencies

Non-linearity in STDP induction protocols

- order of pre-post, post-pre pairs in quadruplet stimulation determines plasticity outcome
 - pre-post post-pre quadruplet -> no plasticity
 - post-pre pre-post quadruplet -> LTP

[Wang et al. Nat Neurosci 2005]

STDP windows depends on brain structure, synapse type

Outline: STDP ... spike-timing dependent plasiticity

- 1. STDP: introduction and history
- 2. Phenomenology of STDP
- 3. Induction mechanisms
- 4. Biophysical models of STDP
- 5. STDP in vivo

[Bi & Poo 1998]

Backpropagating action potential required for STDP

[Magee & Johnston Science 1997]

 Backpropagating action potential provides postsynaptic depolarization required for STDP

STDP requires NMDA receptor activation

[Gustafsson et al. J Neurosci 1987]

[Bi & Poo J Neurosci 1998]

NMDAR antagonist blocks STDP induction (D-AP5 or APV is a selective NMDA receptor antagonist)

Postsynaptic NMDA receptor

current-voltage relationship

- coincidence detector :
 presynaptic action potential → glutamate (Glu)
 postsynaptic depolarization → Mg²+ block is expelled
- calcium permeable

Voltage-dependent Ca channels required for LTD

LTD but not LTP involves the activation of L-type calcium channels

Postsynaptic calcium *required* for plasticity

LTP/LTD equally sensitive to fast and slow [Ca²⁺] buffers

Postsynaptic calcium *sufficient* for plasticity

- LTP induced by brief,
 large amplitude [Ca²⁺]
 increases
- prolonged, modest rise in
 [Ca²⁺] elicits LTD

[Malenka *et al. Science* 1988; Yang *et al., J Neurophysiol* 1999]

Signal pathways downstream of Calcium

Expression of long-term changes

Ca²⁺

presynaptic

neurotransmitter vesicle number

probability of vesicle release

postsynaptic

number of AMPA receptors

conductance of AMPA receptors

Diversity of induction and expression pathways

Nature Reviews | Neuroscience

Outline: STDP ... spike-timing dependent plasiticity

- 1. STDP: introduction and history
- 2. Phenomenology of STDP
- 3. Induction mechanisms
- 4. Biophysical models of STDP
- 5. STDP in vivo

Modeling: translation from spikes to plasticity results

Modeling approaches : phenomenological vs. biophysical

- use pre- and postsynaptic spike times or rate to calculate change in synaptic strength
- conversion can involve arbitrarily complex mathematical models

- resolve parts of the underlying biological machinery involved in the induction of plasticity
- degree of biological detail varies largely

Modeling approaches : phenomenological vs. biophysical

phenomenological models of LTP/LTD

- rate-based plasticity models [Hebb, 1949; Bienenstock et al., 1982; Oja, 1982]
- spike-timing based models [Gerstner et al., 1996; van Rossum et al. 2000; Song, 2000; Pfister & Gerstner, 2006]

biophysical models of LTP/LTD

■ Ca²⁺ – dynamics based models

[Karmarkar *et al.*, 2002; Shouval *et al.*, 2002; Rubin *et al.*, 2005; Graupner & Brunel 2012]

- CaMKII kinase-phosphatase system [Crick 1984; Lisman, 1985; Okamoto & Ichikawa, 2000; Zhabotinsky, 2000; Graupner & Brunel, 2007; Urakubo et al., 2008]
- extensive protein networks
 [Bhalla & Iyengar, 1999; Hayer & Bhalla, 2005]
- local clustering of receptors [Shouval, 2005]

"Standard" STDP model

- spike-timing based rules : $\Delta w_{ij} = f(\{t_{ik}\}, \{t_{jk}\})$
 - "standard" STDP:

$$f(\lbrace t_{ik} \rbrace, \lbrace t_{jk} \rbrace) = \sum_{k,k'} F(t_{ik} - t_{jk'})$$

$$F(\Delta t) = \begin{cases} A_{+} \exp(-\Delta t/\tau_{+}) & \Delta t > 0 \\ A_{-} \exp(-\Delta t/\tau_{-}) & \Delta t < 0 \end{cases}$$

- Variations of the rule:
 - * additive/multiplicative
 - * All-to-all spike pairings / nearest neighbors

 Problems: does not depend on firing rate does not resolve the non-linearities of plasticity

More recent plasticity models

Triplet-based model

[Pfister & Gerstner, 2006;

Clopath et al., 2010]

LTD: A_2

Model based on postsynaptic potential

[Clopath *et al.*, 2010]

More recent plasticity models

Calcium-based model

[Shouval *et al.* 2002,Graupner &Brunel 2012]

Calcium influx

coincidence detector:

Calcium transients from spike-pair stimulation

Calcium transients from spike-pair stimulation

 the calcium control hypothesis posits that the level of postsynaptic calcium concentration controls amplitude and the sign of plasticity

Calcium control hypothesis introduces LTD/LTP thresholds

Question: role of calcium in shaping STDP

- I. Can the dynamics of the postsynaptic calcium account for synaptic plasticity induced by spike-pairs?
- II. To which extent can the STDP phenomenology be explained by calcium?

4. Biophysical models of STDP

Calcium amplitudes determine shape of STDP curve

simulation I

Calcium amplitudes determine shape of STDP curve

[Shouval *et al.*, 2002]

4. Biophysical models of STDP

Calcium amplitudes determine shape of STDP curve

simulation II

Calcium amplitudes determine shape of STDP curve

[Graupner & Brunel PNAS 2012]

Calcium amplitudes determine shape of STDP curve

Diversity of STDP curves : spike-pair stimulation

[Graupner & Brunel, *PNAS* 2012]

Diversity of STDP curves : experimental results

Outline: STDP ... spike-timing dependent plasiticity

- 1. STDP: introduction and history
- 2. Phenomenology of STDP
- 3. Induction mechanisms
- 4. Biophysical models of STDP
- 5. STDP in vivo

[Bi & Poo 1998]

Firing patterns : Realistic firing is highly irregular

stimulation protocols used to induce plasticity

in vivo firing patterns

[Kohn and Smith, 2005]

Regular vs. irregular spike-pairs

 $v_{\text{pre}} = v_{\text{post}} = 10 \text{ Hz}$

Regular vs. irregular spike-pairs

[Graupner et al. *J Neurosci* 2016]

Behavioral time-scale synaptic plasticity

single shot learning

temporal windows
 of the pre-post
 association much
 larger than
 previously thought
 plasticity linked to

plasticity linked to formation of place fields

[Bittner et al. Science 2017]

Conclusions

- STDP: temporally asymmetric form of synaptic plasticity induced by tight temporal correlations between the spikes of pre- and postsynaptic neurons
- induction: coincident pre- and postsynaptic activity lead to calcium influx through NMDA receptors, triggering intracellular signaling cascades
- biophysical model resolve various aspects of the synaptic machinery involved in plasticity induction, most commonly the postsynaptic calcium dynamics
- the role of STDP for learning in the living animal remains elusive