
Introduction to computational neuroscience : 
from single neurons to network dynamics

Michael Graupner  
Brain Physiology Lab, CNRS UMR 8118, Université Paris Descartes

michael.graupner@parisdescartes.fr



What's the brain good for ?

Tree
no neurons

Tree
no neurons

C.elegans
302 neurons

C.elegans
302 neurons

Fly
1 000 000 neurons

Fly
1 000 000 neurons

Rat
1 000 000 000 n.

Rat
1 000 000 000 n.

Human
80 000 000 000 000 n.

Human
80 000 000 000 000 n.

The brain generates motion 
(=behavior)

more complex brains 
generate a greater 
variety of behaviors

more complex brains 
can learn more 
behaviors



stimulus response

Cognitive processing 



What's the brain good at ? 

1 : 0

1 : 0

1 :  0

1 : 0

1 : 0

1 : 1

chess

scrabble

Jeopardy!

video games

Go

Object recognition

Computers outperform humans in algorithmic tasks and tasks 
involving database mining.



Lionel Messi – Barcelona : Getafe CF 2007

What's the brain good at ? 
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What's the brain good at ? 




soccer

numerous
tasks

0 : 1

0 : 1

Brains are better in tasks involving interactions with the real world. 

What's the brain good at ? 



➔ to understand it

➔ to repair/improve it

➔ to get inspired

Why model the brain ?
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The many spatial scales of the brain



How does the brain 

work ? 



just rebuild the whole thing 

A physics/engineering approach

reverse engineering the brain 



The quest for mechanisms : 

Constructing the systems from parts
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The quest for mechanisms : 

Constructing the systems from parts
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Lecture outline : 

Introduction to Computational Neurosciences 

1. Introduction : 

- A couple of brain questions

2. The Neuron : 

- Hodgkin-Huxley model

- Integrate-and-Fire model

- Rate model

- Cable theory

3. Neural networks : 

- Rate models

- Spiking neuron models

- Examples 



What does the hardware look like ? 

Ramon y Cajal (Nobel Prize 1906)                neuron doctrine
Joseph von Gerlach (1871),  Camillo Golgi Reticular theoryx



Neurons = basic units of computation

Dendrites

Soma

Axon

inform
atio n flo w



dendrites
(Ø 1 µm)

synapses 
(~ 10,000)

Soma (20 µm)

axon
(4 cm
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The typical cortical neuron
The synapse

presynaptic
neuron

postsynaptic 
neuron

synaptic 
cleft

vesicules

membrane
potential

action
potentials



Neural integration

Input =
N trains of 

action potentials

Output =
1 train of 

action potentials

Total synaptic current in neuron i at time t : 
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Neural integration
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action potential or “spike”

postsynaptic
potential (PSP)

firing threshold

temporal integration



Single neuron models

➔ Hodgkin Huxley model : description of ion channel
dynamics (Hodgkin & Huxley, 
1952)

➔ integrate-and-fire model : description of  input integration 
membrane potential dynamics 
(LaPicque, 1907) 

➔ rate model :   description of the mean firing rate dynamics

➔ cable theory : description of input propagation along the
 dendrites (Rall, 1962)

Hodgkin Huxley

Wilfrid Rall



simplified single neuron :
single compartment model



The membrane

● Lipid bilayer (= capacitance) with pores (channels = proteines)

extracellular
Na+ , Cl-

intracellular
K+

2 nm

specific capacitance  1 μF/cm²
total specific capacitance = specific capacitance * surface

canal

canallipid
bilayer

pore



Physics reminder

Kirchoff's law : 

Ohm's law :

The current flowing through a resistor is directly
proportional to the voltage drop across the resistor.

The sum of currents flowing into a point is equal to the 
sum of currents flowing out of that point..



I
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lipid bilayer

Membrane properties : equivalent circuit

➔ The membrane potential  V
m
 varies due to the opening/closing of different 

types of ion channels.

➔ “Active membrane” : Ion channel conductance varies with the membrane 
potential. 

inside
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Hodgkin-Huxley model : 
membrane potential equation

inside

I stim=I Na+ I k+ I L+ IC

I
stim

Kirchhoff's law :

Ohm's law : 
 

I stim=gNa (t)(V m−V Na)+gK (t )(V m−V K )+gL(V m−V L)+C
dV m

dt

R=
ΔV
I

I=
ΔV
R

=g (V m−V rev)



Hodgkin-Huxley model : potassium channel
 

➔ 4 similar sub-units

➔ Each subunit can be « open » or « closed »  :

➔ The channel is « open » if and only if all the sub-units are 
« open »



• probability that one sub-unit is « open » :

• probability that all sub-units are « open » :

• maximal K+ conductance, when all channels are open :

• K+ conductance :

n(t)

n(t)4

ḡK
gk= ḡK n(t)

4

C
dV
dt

=gNa (t)(V Na−V )+gK (t)(V K−V )+gL(V L−V )+I stim

C
dV
dt

=gNa (t)(V Na−V )+ḡK n (t)
4 (V K−V )+gL(V L−V )+ I stim

Hodgkin-Huxley model : potassium channel
 



Hodgkin-Huxley model : potassium channel

)(Vn

)(Vn

n1 n

τ n
dn
dt

=−n+n∞

τ n=
1

αn+ βn

n∞=
α n

α n+βn

n∞ τn

dynamics equation

time constant

asymptotic value

➔ The potassium channel 
is closed at resting 
potential. 
 



Math reminder : difference quotient   

t

f(t)

t+Δt

f(t+Δt)

Δt

Δf Δ f
Δ t

=
f ( t+Δ t)− f (t)

Δ t

lim
Δ t →∞

f (x+Δ t)−f (t)
Δ t

=
df
dt

df
dt

= ḟ

secant line



Hodgkin-Huxley model : sodium channel

• Each sub-unit can be « open » or « closed »

• The sodium channel has 3 similar « fast » esub-
units and 1 « slow » subunit 

➔ The channel is « open » if and only if all the sub-units are 
« open »



modèle Hodgkin-Huxley : canal de sodium

• Probability that the « fast «  sub-unit is « open » :

• Probability that the « slow » sub-unit is « open » :  

• Probability that the channel is « open » :

• Maximal Na+ condutance, when all channels are open :

• Na+ conductance :

extLLKKNaNa IVVgVVgVVg
dt

dV
C  )()()(

C
dV
dt

= ḡNam
3h(V Na−V )+ ḡK n

4 (V K−V )+gL(V L−V )+ I stim

m
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modèle Hodgkin-Huxley : canal de sodium

τ m
dm
dt

=−m+m∞

τm=
1

αm+ βm

m∞=
αm

αm+βm

dynamics of the of the fast sub-unit dynamics of the slow sub-unit :

τ h
dh
dt

=−h+h∞

τ h=
1

αh+ βh

h∞=
α h

α h+βh

➔ The fast sub-unit is closed at 
resting potential. 

➔ The slow sub-unit is open at 
resting potential. 

➔ The sodium channel is closed 
at resting potential. 

asymptotic values time constants



Complete equations of the 
Hodgkin-Huxley model

C
dV
dt

= ḡNam
3h(V Na−V )+ ḡK n

4 (V K−V )+gL(V L−V )+ I stim
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Hodgkin-Huxley model : the action potential

 



Hodgkin-Huxley model : the action potential
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Hodgkin-Huxley model : current injection

 

V
m

V
m

V
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stim



Hodgkin-Huxley model : F-I curve

 

gL = 0.05, 0.1, 0.15, 0.2 mS/cm2
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Integrate-and-Fire model : derivation

 

simplification : no active currents 

➔ The shape of the action potential is not described !

g(t)=const .

C
dV
dt

=gNa (V Na−V )+gK (V K−V )+gL (V L−V )+ I stim

C
dV
dt

=gNaV Na+gK V K+gLV L−( gNa+gK+gL )V + I stim

C
dV
dt

=G tot (V 0−V )+ I stim

τ
dV
dt

=(V 0−V )+
I stim
G tot

totG

C
τ

Gtot



Integrate-and-Fire model : membrane 
potential equation

 

τ
dV
dt

=(V 0−V )+
I ext
Gtot

● V
0
 resting membrane potential

● τ  membrane time constant
● I

ext
 external current (synaptic)

● G
tot

 total conductance

generation of the action potential :  

● Θ firing threshold
● V

r
 reset potential

● if V>Θ :
→ the neuron fires an action potential
→ after the action potential, the membrane potential is reset to V

r



Integrate-and-Fire model : dynamics
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Integrate-and-Fire model : dynamics

 

time

F-I curve
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Rate model

 

Phenomenological description of the input-output function :

)( TIIFm
dt

dm
extsyn τ

m: output of the neuron – firing rate

τ  : membrane time constant

F  : input-output transfer function

Isyn: synaptic input

Iext : external current 

T  : firing threshold

T

example : linear input-
output function

fir
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 How do potentials propagate along the 
dendritic tree ?

 



Cable theory

 

● how do synaptic inputs propagate to 

the soma or the axon initial segment 

● how do input interact between each 

other

● how does the input location along 

the dendritic tree impact its 

functional importance for the neuron 



 Abstraction of the dendritic membrane 
of a neuron

 

Soma and dendritic 
branch

Portion of the secondary 
dendrite divided in three 
sub-cylinders 

Discrete electric 
model of the three 
sub-cylinders 



Non-linear cable equation

 

models the membrane potential distribution along a membrane cylinder

V(t)           V(x,t) 

1
r i+re

∂V
∂ x2=cm

∂V
∂ t

+ I ion

typical membrane potential 
equation of the point neuron 
model 

current which propagates 
between neighboring points 
along the cylinder 



Stationary solution of the cable equation

 

λ length constant

λ

1/e

I ext (t , x)=δ(x)
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Spatial and temporal distribution of the 
potential along the membrane

 

sealed cable

I ext (t , x)

0 1 2 3 4 5

t = 0.1, 0.2, ... , 1.0 x = 1.5, 2.0, 2.5, ... , 5.0

po
te
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l
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l

different time points different locations



Single neuron models

 
real 

neuron
compartmental

model
cable
theory

point
neuron



Neurons form networks

The brain : a network of 1011 neurons connected by 1015 synapses



C elegans : brain network

C elegans brain : 302 neurons



C elegans : brain network

C elegans brain : 302 neurons – each of them a highly specialized 
analog computer 



Brain network : from sensory to motor



Two classes of neural network models

● Rate models (neural mass models) : 
describe the activity of a whole 
population of neurons by a single 
‘average firing rate’ variable : m(x, t)

● Networks of spiking neurons :  
describe the activity of a population of 
N neurons coupled through network 
connectivity matrix by O(N) coupled 
differential equations.



Network models :  
rate vs. spiking neural network

réseau neuronal



Rate model Spiking neuron model

each individual neuron is described

groups of similar neurons are 
grouped together

Network models :  
rate vs. spiking neural network



Rate models : spatial selectivity

In many brain regions, neighboring neurons share similar selectivity to external inputs

→There is a topographical organization of selectivity.

Example : In many areas of the brain, 
neurons show selectivity to spatial variables:.

● Primary visual cortex : orientation

● MT : direction of movement

● Posterior parietal cortex, prefrontal 
cortex: spatial location (present and past)

● FEF: location of a saccade

● Motor cortex : direction of arm

...

What are the mechanisms of spatial 
selectivity?



Networks of spiking neurons : 
irregularity 

Spontaneous vs. selective/evoked 
activity :

● Spontaneous activity : 1-20 spk/s

● In presence of external stimuli: in 
many parts of cortex, instantaneous 
firing rate (PSTH) depends on (carries 
information about) external stimuli.

Statistics of neural activity :

● very irregular firing (close to Poisson 
process – CV close to 1)

● Large membrane potential 
fluctuations (~ 5mV)

What are the mechanisms of 
irregular activity?

[Tovee et al. 1993]

[Anderson et al. 2000]



Networks of spiking neurons : 
oscillations 

● LFP recordings : reflect local network activity

● Various oscillatory patterns in wake and sleep

What are the mechanisms of synchronized oscillations?

[Fries et al. 2001]

[Destexhe et al. 1999]



Network models : parts list

● How many neuron types ? 

How many neurons of each type ?

● How are the neurons connected

(What is the connectivity matrix) ? 

● What are the external inputs ?

● What is(are) the neuron model(s) ? 

● What is(are) the synapse model(s)?



Types and numbers of neurons

● How many types of neurons? How many 

neurons in each type?

- Depends on the system modeled

- Classic example : 

  Two population cortical network (E-I)

- Numerical simulations : N ~ 103-104 

  (single workstations), much more 

   (clusters, dedicated supercomputers)

- Analytical calcuations : N →∞ 



Connectivity matrix

● How are neurons connected (what is the 

connectivity matrix)?

- Fully connected (all-to-all)

- Randomly connected (par ex. Erdos-Renyi)

- Spatial structure

- With a structure imposed by learning



External inputs

● What are the external inputs ? 

- Constant

- Stochastic (e.g. independent Poisson processes; 

   independent white noise)

- Temporally/spatially structured



Neuron models

● What is(are) the neuronal model(s) ? 

- Binary 

- Spiking (LIF, NLIF, HH-type, etc. ...)



Synapse models

● What is(are) the synapse model(s)?

- Fixed number (synaptic weight, binary 

   networks)

- Temporal kernel (spiking networks)

- Non-plastic vs. plastic



Questions

● Dynamics: What are the intrinsic dynamics of networks (spontaneous 

activity, in the absence of structured inputs)?

● Coding: What is the effect of external inputs on network dynamics? How do 

networks encode external inputs?

● Learning and memory: How are external inputs learned/memorized?

- How do external inputs modify network connectivity through synaptic        

  plasticity? How is learning implemented?

- What is the impact of structuring in the connectivity on network dynamics?

● Computation: How do networks perform computations?



How to investigate a neural 
network model's behavior ? 

1st Step: a simplified network for mathematical analysis 
● Simple neuron model (rate model with linear transfer function, or Integrate-and-

Fire model)
● All-to-all connectivity or simple connectivity scheme (Gaussian)
● No noise, no heterogeneity 

 

Étape 2 : numerical simulations of a more “realistic” model
● “Realistic” neuron model (non-linear input-output function, H&H, 

conductance-based currents ...)
● “Realistic” connectivity scheme (with some randomness)
● Synaptic noise 
● Heterogeneity in the single neuron parameters (threshold, gain, 

conductances, ... )

put in relation



Rate model

● In a ‘rate model’ (also called: ‘firing rate model’, ‘neural mass model’, neural 
field model’, ‘Wilson-Cowan model’), one describes the activity (instantaneous 
firing rate) of a population of neurons at a given location by a single analog 
variable:

● τ : time constant of firing rate dynamics
● r (x, t): firing rate of neurons at location x at time t 
● Φ (.) : transfer function (f-I curve)
● I (x, t) : external input
● J (x, y): strength of synaptic connections between neurons at locations x and y

 

[Amari 1972, Wilson and Cowan 1972]

τ ṙ (x , t)=−r (x ,t)+Φ (I (x , t )+∫ dy J (|x− y|)r ( y , t))



The transfer function Φ (.)

Threshold linear Φ(x )=[x−T ]+ Sigmoidal Φ(x )=1/(1+exp (−(x−T )))

f-I curve of a specific spiking neuron 
model

f-I curve of a real neuron [Rauch et al 
2003]



From populations of individual 
neurons to a rate model

The population activity of 

homogeneous populations of

• Stochastic binary neurons

• Stochastic spiking neurons (EIF)

can sometimes be shown to be well 

approximated by firing rate equations

τ
dr
dt

=−r ( t)+Φ ( I (t)+J r (t))

time 



Rate models of local networks of 
neurons

● n sub-populations described by their 
average firing rate r

i 
, i = 1, ... ,n

● Example : E-I network (Wilson and Cowan 
1972) 
 
 

τ i ṙi=−r i+Φi(I+∑j
J ijr j)

τE ṙE=−r E+ΦE ( IEX+J EEr E−J EI rI )

τ I ṙ I=−r I+ΦI (I IX+J IE rE−J II r I )



Analysis of rate models

● Solve the equations for fixed point(s) :

● Check linear stability of fixed points :
- A small perturbation δr around the fixed point obeys the linearized dynamics

- Compute eigenvalues λ of the Jacobian matrix (-1 + ΦJ)

- Fixed point stable if all eigenvalues have negative real parts;
- “Rate” instability (saddle node bifurcation) when λ = 0
- Oscillatory instability (Hopf bifurcation) when λ = ± iw and w≠0 

τ ṙ=−r+Φ (I+J r )

r0=Φ (I+J r )

δ̇ r=
(−1+Φ ' J )

τ δ r



Simplest case :
 1 population, linear Φ 

● Unstable if J > 1 (' rate instability') 

● Perfect integrator if J = 1 :

● Stable if J < 1 :

- Excitatory network (0 < J < 1): amplification of inputs, slow response
- Inhibitor network (J < 0): attenuation of inputs, fast response

τ ṙ=−r+ (I+J r )

r (t)=
1
τ∫

t

I (t ' )dt '

τ
(1−J )

dr
dt
=−r+

I
(1−J )

r
I

J



Network dynamics of spiking networks

Binary networks Spiking networks

● Neurons receive inputs (both from the outside and from the network itself)...

● Neurons decide whether to be active or not, as a function of those inputs

Ii=IiX+∑
j

J ij S j(t ) Ii=IiX+∑
j , k

J ij S ij(t−t j
k )

S i(t+dt )=Θ(I i(t)−T ) τ i
dV i

dt
=−V i+ I i(t )

Membrane potential : V i(t )

Spike emitted whenever

After the spike, voltage is reset to 

V i(t)=V T

V R



Visualizing network activity

Binary network Spiking network

● Raster plot : spiking activity of whole network vs time

S i(t)=1,0 S i(t)=∑
k

δ(t−t i
k )

time (ms)
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um
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e

r



Firing rate

Binary network Spiking network

● Averaging over time: average firing rates of single neurons

νi=
1
T
∑
i

Si(t)dt νi=
1
T
∫

0

T

S i(t)dt

time (ms)

n
e

ur
o

n
 n

u
m

be
r



Population activity

Binary networks Spiking networks

● Averaging over neurons: instantaneous average rate (vs time)

ν(t)=
1
N dt

∑
i

Si(t)

time (ms)

ne
ur

on
 n

um
b

er

time (ms)



Example 1 : 
E network rate model with bistability

Sigmoidal transfer function Φ



Example 2 : I network rate model with 
delays - oscillations

τ
dr I
dt

=−r I+Φ[ I IX−J II rI (t−D)]

● oscillations at a frequency f
c
 appear when 

● For

● Frequency controlled by synaptic delays 
 fast oscillations in cortex/hippocampus? ⇒

~J II>J c

D≪τ , J c∼π τ/(2D) , f c∼1/(4D)



Example 2 : I network rate spiking neuron 
model with delays - oscillations

● sparsely connected network of inhibitory integrate-and-fire neurons, delay D = 2 ms 

● Individual neurons fire irregularly at low rates but the network exhibits
an synchronized, oscillatory population activity

p = 0.2

N=5000



Statistics of spike trains

● Spike train (action potentials) :
→A sequence of spike times  tk

→A signal

● Inter-spike interval (ISI) : 

● Firing rate :
→number of spikes / time 
→mean of S :

S (t)=∑
k

δ(t−tk )

ISI=tn+1−t n

r=⟨S (t )⟩= lim
T→+∞

1
T
∫

0

T

S (t)dt



Statistics of spike trains

● Spike trains are irregular and vary from one trial to another : 

→probabilistic description 

● The statistics of cortical spike trains resemble a “Poisson process” : 

[Holt et al., 1996]

Coefficient of Variation
CV

ISI distribution

visual cortex

firing rate ISI (ms)

visual stimulation 
in vivo
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